Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
Heliyon ; 10(1): e23648, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38187271

The cotton mealybug, Phenacoccus solenopsis Tinsley and papaya mealybug, Paracoccus marginatus Williams and Granara de Willink (Hemiptera: Pseudococcidae) are becoming major threats to the production of Gymnema sylvestre R. Br. (Asclepiadaceae) in India. Management mainly depends on chemical insecticides which cause a serious problem of pesticide residue and insecticide resistance. The use of biorational insecticides such as biopesticides, botanicals, insect growth regulators, and microbial insecticides is important components of an Integrated Pest Management (IPM) program for successful management. We evaluated the bio-efficacy of twelve biorational insecticides, including entomopathogenic fungi (EPF), using the leaf spray method in laboratory conditions at 25 ± 1 °C, 70 % ± 5 % RH. The results revealed that the highest percent mortality was recorded by acetamiprid 20 % SP (100.00 %), followed by azadirachtin (98.27 %), Lecanicillium muscarium (2 × 109 spores/mL) (85.70 %) and Ocimum sanctum leaf extract (76.87 %) at 120 h after treatment (HAT) in P. solenopsis. In P. marginatus, 100.00 %, 96.39 % and 85.67 % and 74.90 % mortalities were achieved by acetamiprid 20 % SP, azadirachtin, L. muscarium (2 × 109 spores/mL) and O. sanctum leaf extract, respectively, at 120 HAT during the first spray. Various biorational insecticides showed a more or less similar trend of percent mortality in both species during the second spray. In both species, the lowest percent mortality was recorded by Andrographis paniculata leaf extract (46.29, 44.54) and (41.03, 46.39) at 120 Hours after treatment in the first and second spray, respectively. It was concluded that all the prescribed treatments are more effective than the control. Overall, azadirachtin recorded the highest percent mortality after acetamiprid and had the shortest LT50 (12.52 h) and (13.87 h) values in P. solenopsis and P. marginatus, respectively. Our study emphasizes that biopesticides like Azadirachtin 1 % EC (10000 ppm), L. muscarium (2 × 109 spores/mL) (5 mL/L) and O. sanctum leaf extract (5 %) may be recommended as alternatives to synthetic insecticides. Botanicals and EPF would be the most effective approach for sustainable integrated management of P. solenopsis and P. marginatus in the G. sylvestre ecosystem.

2.
PeerJ ; 11: e15565, 2023.
Article En | MEDLINE | ID: mdl-37397008

Faisalabad is a major industrial area in Pakistan's Punjab province that discharges wastewater into the Chenab River. Industrial effluents in Faisalabad are predicted to pose a significant threat to the riparian vegetation of the Chenab River and nearby vegetation. Heavy metal pollution of plants, water, and soils is one of the biggest problems worldwide that needs to be addressed because heavy metals above normal levels are extremely dangerous to both riparian vegetation and wildlife. The results indicated high levels of pollution in the industrial effluents as well as in the river in terms of salinity, metal toxicity, TSS, TDS, SAR, the acidic and alkaline nature of the industrial effluents, and the spread of industrial effluents up to 15 square kilometres in the Chenab River. Despite the higher pollution, four plants were found at all sites: Calotropis procera, Phyla nodiflora, Eclipta alba and Ranunculus sceleratus. It was found that most of the selected plants were phytoaccumulators, making them best suited to survive in harsh environments such as those with industrial pollution. The Fe concentration in the plant constituents was the highest, along with Zn, Pb, Cd, and Cu, all of which were above the permissible limits of the WHO. The metal transfer factor (MTF) was higher in most of the plants studied, and even exceeded 10 at some severely affected sites. Calotropis procera proved to be the most suitable plant for growth on drainage systems and also at river sites, as it had the highest importance value across all sites and seasons.


Environmental Monitoring , Metals, Heavy , Pakistan , Metals, Heavy/analysis , Environmental Pollution , Wastewater
3.
Molecules ; 28(13)2023 Jun 29.
Article En | MEDLINE | ID: mdl-37446788

Oxidative stress and chronic inflammation interplay with the pathogenesis of cancer. Breast cancer in women is the burning issue of this century, despite chemotherapy and magnetic therapy. The management of secondary complications triggered by post-chemotherapy poses a great challenge. Thus, identifying target-specific drugs with anticancer potential without secondary complications is a challenging task for the scientific community. It is possible that green technology has been employed in a greater way in order to fabricate nanoparticles by amalgamating plants with medicinal potential with metal oxide nanoparticles that impart high therapeutic properties with the least toxicity. Thus, the present study describes the synthesis of Titanium dioxide nanoparticles (TiO2 NPs) using aqueous Terenna asiatica fruit extract, with its antioxidant, anti-inflammatory and anticancer properties. The characterisation of TiO2 NPs was carried out using a powdered X-ray diffractometer (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray diffraction (EDX), high-resolution transmission electron microscopy (HR-TEM), dynamic light scattering (DLS), and zeta-potential. TiO2 NPs showed their antioxidant property by scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals in a dose-dependent manner with an IC50 value of 80.21 µg/µL. To ascertain the observed antioxidant potential of TiO2 NPs, red blood cells (RBC) were used as an in vitro model system. Interestingly, TiO2 NPs significantly ameliorated all the stress parameters, such as lipid peroxidation (LPO), protein carbonyl content (PCC), total thiol (TT), superoxide dismutase (SOD), and catalase (CAT) in sodium nitrite (NaNO2)-induced oxidative stress, in RBC. Furthermore, TiO2 NPs inhibited RBC membrane lysis and the denaturation of both egg and bovine serum albumin, significantly in a dose-dependent manner, suggesting its anti-inflammatory property. Interestingly, TiO2 NPs were found to kill the MCF-7 cells as a significant decrease in cell viability of the MCF-7 cell lines was observed. The percentage of growth inhibition of the MCF-7 cells was compared to that of untreated cells at various doses (12.5, 25, 50, 100, and 200 µg/mL). The IC50 value of TiO2 NPs was found to be (120 µg/mL). Furthermore, the Annexin V/PI staining test was carried out to confirm apoptosis. The assay indicated apoptosis in cancer cells after 24 h of exposure to TiO2 NPs (120 µg/mL). The untreated cells showed no significant apoptosis in comparison with the standard drug doxorubicin. In conclusion, TiO2 NPs potentially ameliorate NaNO2-induced oxidative stress in RBC, inflammation and MCF-7 cells proliferation.


Breast Neoplasms , Metal Nanoparticles , Humans , Female , Antioxidants/pharmacology , Antioxidants/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Protein Carbonylation , Oxidative Stress , Metal Nanoparticles/chemistry , Inflammation , Cell Proliferation
4.
Plants (Basel) ; 12(11)2023 May 27.
Article En | MEDLINE | ID: mdl-37299109

The current study explored the antioxidant and antibacterial capabilities of zinc oxide nanoparticles (ZnONPs) synthetized using methanolic leaf extracts of the medicinal herb Viscum album. Through TEM investigation and UV-Vis analysis, which peaked at 406 nm, the synthesis of ZnONPs was verified. TEM analyses showed that the synthesized ZnONPs had a size distribution with an average of 13.5 nm and a quasi-spherical shape. Forty-four phytoconstituents were found in the methanolic leaf extracts of V. album. Additionally, a comparison of the antibacterial effectiveness and antioxidant capacity of aqueous and methanolic extracts of wild-grown V. album phytomedicine and green-manufactured ZnONPs was conducted. The green-generated ZnONPs were examined against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa and shown to have superior antibacterial activity by 22%, 66%, and 44%, respectively, as compared to wild herbal medicinal extracts. Since the ZnONPs' aqueous extracts had higher concentrations of DNA gyrase-B inhibitory components, they were shown to be more effective in limiting bacterial growth. In contrast to the percentages of 49% and 57% for a wild plant extract, the aqueous- and methanolic-extract-mediated green ZnONPs, with a 100 g/mL concentration, showed 94% and 98% scavenging capacity for DPPH free radicals, respectively. However, methanolic extracts were more effective than aqueous extracts in terms of the antioxidant analyses. This study establishes that greenly produced ZnONPs have the potential to be used in nanomedicine to treat bacteria that are resistant to a variety of drugs, as well as those with reactive oxygen species toxicity.

5.
Genes (Basel) ; 14(6)2023 06 03.
Article En | MEDLINE | ID: mdl-37372401

The Begomovirus genus of the family Geminiviridae comprises the largest group of geminiviruses. Begomoviruses are transmitted by the whitefly complex (Bemisia tabaci) and infect dicotyledonous plants in tropical and subtropical regions. The list of begomoviruses is continuously increasing as a result of improvements in the methods for identification, especially from weed plants, which are considered a source of new viruses and reservoirs of economically important viruses but are often neglected during diversity studies. Lathyrus aphaca L. weed plants (yellow-flowered pea) with varicose veins and discoloration of the leaves were found. Amplified genomic DNA through rolling circular amplification was subjected to PCR analysis for the detection of the viral genome and associated DNA-satellites (alphasatellites and betasatellites). A full-length sequence (2.8 kb) of a monopartite begomovirus clone was determined; however, we could not find any associated DNA satellites. The amplified full-length clone of Rose leaf curl virus (RoLCuV) reserved all the characteristics and features of an Old World (OW) monopartite begomovirus. Furthermore, it is the first time it has been reported from a new weed host, yellow-flowered pea. Rolling circle amplification and polymerase chain reaction analysis of associated DNA satellites, alphasatellite, and betasatellite, were frequently accomplished but unable to amplify from the begomovirus-infected samples, indicating the presence of only monopartite Old World begomovirus. It is observed that RoLCuV has the capability to infect different hosts individually without the assistance of any DNA satellite component. Recombination in viruses is also a source of begomovirus infection in different hosts.


Begomovirus , Lathyrus , Begomovirus/genetics , Lathyrus/genetics , Plant Diseases , Genome, Viral , DNA, Viral/genetics
6.
Molecules ; 28(12)2023 Jun 07.
Article En | MEDLINE | ID: mdl-37375162

The challenges in the production of metabolites of medicinal potential from wild plants include low yields, slow growth rates, seasonal variations, genetic variability and regulatory as well as ethical constraints. Overcoming these challenges is of paramount significance and interdisciplinary approaches and innovative strategies are prevalently applied to optimize phytoconstituents' production, enhance yield, biomass, ensure sustainable consistency and scalability. In this study, we investigated the effects of elicitation with yeast extract and calcium oxide nanoparticles (CaONPs) on in vitro cultures of Swertia chirata (Roxb. ex Fleming) Karsten. Specifically, we examined the effects of different concentrations of CaONPs in combination with different concentrations of yeast extract on various parameters related to callus growth, antioxidant activity, biomass and phytochemical contents. Our results showed that elicitation with yeast extract and CaONPs had significant effects on the growth and characteristics of callus cultures of S. chirata. The treatments involving yeast extract and CaONPs were found to be the most effective in increasing the contents of total flavonoid contents (TFC), total phenolic contents (TPC), amarogentin and mangiferin. These treatments also led to an improvement in the contents of total anthocyanin and alpha tocopherols. Additionally, the DPPH scavenging activity was significantly increased in the treated samples. Furthermore, the treatments involving elicitation with yeast extract and CaONPs also led to significant improvements in callus growth and characteristics. These treatments promoted callus response from an average to an excellent level and improved the color and nature of the callus from yellow to yellow-brown and greenish and from fragile to compact, respectively. The best response was observed in treatments involving 0.20 g/L yeast extract and 90 ug/L CaONPs. Overall, our findings suggest that elicitation with yeast extract and CaONPs can be a useful strategy for promoting the growth, biomass, phytochemical contents and antioxidant activity of callus cultures of S. chirata in comparison to wild plant herbal drug samples.


Nanoparticles , Swertia , Antioxidants/chemistry , Swertia/chemistry , Phytochemicals/pharmacology
7.
Molecules ; 28(9)2023 May 04.
Article En | MEDLINE | ID: mdl-37175286

This work describes an ab initio principle computational examination of the optical, structural, elastic, electronic and mechanical characteristics of aluminum-based compounds AlRF3 (R = N, P) halide-perovskites. For optimization purposes, we used the Birch-Murnaghan equation of state and discovered that the compounds AlNF3 and AlPF3 are both structurally stable. The IRelast software was used to compute elastic constants (ECs) of the elastic properties. The aforementioned compounds are stable mechanically. They exhibit strong resistance to plastic strain, possess ductile nature and anisotropic behavior and are scratch-resistant. The modified Becke-Johnson (Tb-mBJ) approximation was adopted to compute various physical properties, revealing that AlNF3 and AlPF3 are both metals in nature. From the density of states, the support of various electronic states in the band structures are explained. Other various optical characteristics have been calculated from the investigations of the band gap energy of the aforementioned compounds. These compounds absorb a significant amount of energy at high levels. At low energy levels, the compound AlNF3 is transparent to incoming photons, whereas the compound AlPF3 is somewhat opaque. The examination of the visual details led us to the deduction that the compounds AlNF3 and AlPF3 may be used in making ultraviolet devices based on high frequency. This computational effort is being made for the first time in order to investigate the aforementioned properties of these chemicals, which have yet to be confirmed experimentally.

8.
Nanomaterials (Basel) ; 13(9)2023 Apr 24.
Article En | MEDLINE | ID: mdl-37176998

This paper explores the potential of nano seed priming with calcium oxide nanoparticles in maintaining the redox status in carom (Trachyspermum ammi L.) plants by modulating non-enzymatic antioxidants and enzymatic antioxidants. Calcium oxide nanoparticles were prepared in four testing regimes comprising 25, 50, 75, and 100 ppm along with the control treatment of 0 ppm (distilled water). Priming was performed by soaking the carom seeds in the aerated water, and plants were grown under split plots corresponding to drought and water. Seed priming with 75 ppm CaONPs reduced hydrogen peroxide, malondialdehyde contents and electrolyte leakage by 23.3%, 35.9% and 31.6%, respectively, in the water-stressed carom plants. The glutathione s-transferase, superoxide dismutase and peroxidase functions improved under water stress by 42.3%, 24.1% and 44.8%, respectively, in the carom plants raised through 100 ppm primed seeds with CaO_NPs. Priming induced better Ca2+ signaling, which affected the enzymes of the ascorbate glutathione cycle, enabling them to maintain redox status in the carom plants exposed to drought stress. The morpho-agronomic traits of carom plants in terms of number of umbels, hundred seeds weights, shoot and root length and biomass improved significantly upon seed priming treatments. Seed priming with CaO_NPs is a viable strategy to combat reactive oxygen species-mediated damages in the carom plants.

9.
Materials (Basel) ; 16(7)2023 Mar 30.
Article En | MEDLINE | ID: mdl-37049061

Modern nanotechnology encompasses every field of life. Nowadays, phytochemically fabricated nanoparticles are being widely studied for their bioactivities and biosafety. The present research studied the synthesis, characterization, stability, biocompatibility, and in vitro bioactivities of calcium oxide nanoparticles (CaONPs). The CaONPs were synthesized using Citrullus colocynthis ethanolic fruit extracts. Greenly synthesized nanoparticles had an average size of 35.93 ± 2.54 nm and showed an absorbance peak at 325 nm. An absorbance peak in this range depicts the coating of phenolic acids, flavones, flavonols, and flavonoids on the surface of CaONPs. The XRD pattern showed sharp peaks that illustrated the preferred cubic crystalline nature of triturate. A great hindrance to the use of nanoparticles in the field of medicine is their extremely reactive nature. The FTIR analysis of the CaONPs showed a coating of phytochemicals on their surface, due to which they showed great stability. The vibrations present at 3639 cm-1 for alcohols or phenols, 2860 cm-1 for alkanes, 2487 cm-1 for alkynes, 1625 cm-1 for amines, and 1434 cm-1 for carboxylic acids and aldehydes show adsorption of phytochemicals on the surface of CaONPs. The CaONPs were highly stable over time; however, their stability was slightly disturbed by varying salinity and pH. The dialysis membrane in vitro release analysis revealed consistent nanoparticle release over a 10-h period. The bioactivities of CaONPs, C. colocynthis fruit extracts, and their synergistic solution were assessed. Synergistic solutions of both CaONPs and C. colocynthis fruit extracts showed great bioactivity and biosafety. The synergistic solution reduced cell viability by only 14.68% and caused only 16% hemolysis. The synergistic solution inhibited Micrococcus luteus slightly more effectively than streptomycin, with an activity index of 1.02. It also caused an 83.87% reduction in free radicals.

10.
Plants (Basel) ; 12(7)2023 Apr 04.
Article En | MEDLINE | ID: mdl-37050182

In the present research, selenium nanoparticles (SeNPs) were tested for their use as seed priming agents under field trials on tomatoes (Solanum lycopersicum L.) for their efficacy in conferring drought tolerance. Four different seed priming regimes of SeNPs were created, comprising 25, 50, 75, and 100 ppm, along with a control treatment of 0 ppm. Seeds were planted in split plots under two irrigation regimes comprising water and water stress. The results suggest that seed priming with SeNPs can improve tomato crop performance under drought stress. Plants grown with 75 ppm SeNPs-primed seeds had lower hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels by 39.3% and 28.9%, respectively. Seed priming with 75 ppm SeNPs further increased the superoxide dismutase (SOD) and catalase (CAT) functions by 34.9 and 25.4%, respectively. The same treatment increased the total carotenoids content by 13.5%, α-tocopherols content by 22.8%, total flavonoids content by 25.2%, total anthocyanins content by 19.6%, ascorbic acid content by 26.4%, reduced glutathione (GSH) content by 14.8%, and oxidized glutathione (GSSG) content by 13.12%. Furthermore, seed priming with SeNPs upregulated the functions of enzymes of ascorbate glutathione cycle. Seed priming with SeNPs is a smart application to sustain tomato production in arid lands.

11.
Plants (Basel) ; 12(7)2023 Apr 06.
Article En | MEDLINE | ID: mdl-37050200

Dermatological ailments are a major health problem, especially when related to human immune deficiency syndrome and acquired immune deficiency. The goal of this study was to identify the medicinal plants used by the indigenous peoples of the Northwestern Himalayas to treat dermatological diseases. Several field trips were conducted in the spring and summer seasons of 2020-2021 to collect the plants of dermatological value and information about their use through open-ended semi-structured interviews (n = 53) and group discussions (n = 33). The current investigation found 64 ethnomedicinal plants belonging to 34 families commonly used to treat a variety of dermatological ailments. The main growth form was herbs (80%), followed by trees (8%) and ferns (6%). It was found that leaves (51%) were the most commonly used plant part, followed by roots and the whole plant. Wound healing was the most dominant application, with 18 plant species used, followed by skin burns cured by 11 plant species and skin boils by eight plant species. Out of the total (18%) of medicinal plants with cosmetic uses, i.e., roots of Jurinea dolomiaea, Rheum webbianum, and Rheum spiciforme were crushed into powder and mixed with turmeric, and the paste is applied topically for glowing skin. Among the various preparation methods, paste (38%) was the most common way of preparation, followed by poultice (29%) and infusion (9%). Between ethnic groups, the maximum homogeneity was between Gujjar and Bakarwal ethnic groups (23 species, 36%), followed by Gujjars and Kashmiri (14 species, 22%). Bakarwals and Gujjar people live in the same geographical location, and they graze their animals in pastures, practice extensive transhumance pastoralism, and pass through different ecological landscapes, thus having sufficient experiences with certain plants and retaining more knowledge. The species identified with the highest utilization based on the number of citations and use value included Ficus carica, Cichorium intybus, Euphorbia wallichii, Pinus wallichiana, Plantago major, Jurinea dolomiaea, and Artemisia absinthium. The findings of this study demonstrate that people who reside in the Northwestern Himalayas region still rely on medicinal plants.

12.
Biology (Basel) ; 12(4)2023 Apr 18.
Article En | MEDLINE | ID: mdl-37106810

The distribution of large ungulates is more often negatively impacted by the changing climate, especially global warming and species with limited distributional zones. While developing conservation action plans for the threatened species such as the Himalayan goral (Naemorhedus goral Hardwicke 1825; a mountain goat that mostly inhabits rocky cliffs), it is imperative to comprehend how future distributions might vary based on predicted climate change. In this work, MaxEnt modeling was employed to assess the habitat suitability of the target species under varying climate scenarios. Such studies have provided highly useful information but to date no such research work has been conducted that considers this endemic animal species of the Himalayas. A total of 81 species presence points, 19 bioclimatic and 3 topographic variables were employed in the species distribution modeling (SDM), and MaxEnt calibration and optimization were performed to select the best candidate model. For predicted climate scenarios, the future data is drawn from SSPs 245 and SSPs 585 of the 2050s and 2070s. Out of total 20 variables, annual precipitation, elevation, precipitation of driest month, slope aspect, minimum temperature of coldest month, slope, precipitation of warmest quarter, and temperature annual range (in order) were detected as the most influential drivers. A high accuracy value (AUC-ROC > 0.9) was observed for all the predicted scenarios. The habitat suitability of the targeted species might expand (about 3.7 to 13%) under all the future climate change scenarios. The same is evident according to local residents as species which are locally considered extinct in most of the area, might be shifting northwards along the elevation gradient away from human settlements. This study recommends additional research is conducted to prevent potential population collapses, and to identify other possible causes of local extinction events. Our findings will aid in formulating conservation plans for the Himalayan goral in a changing climate and serve as a basis for future monitoring of the species.

13.
Biology (Basel) ; 12(4)2023 Apr 17.
Article En | MEDLINE | ID: mdl-37106809

Numerous investigations on plant ethnomedicinal applications have been conducted; however, knowledge about the medicinal use of wild animals is still limited. This present study is the second on the medicinal and cultural meaning of avian and mammalian species used by the population in the surrounding area of the Ayubia National Park, KPK, Pakistan. Interviews and meetings were compiled from the participants (N = 182) of the study area. The relative frequency of citation, fidelity level, relative popularity level, and rank order priority indices were applied to analyze the information. Overall, 137 species of wild avian and mammalian species were documented. Of these, 18 avian and 14 mammalian species were utilized to treat different diseases. The present research showed noteworthy ethno-ornithological and ethno-mammalogical knowledge of local people and their connection with fauna, which might be useful in the sustainable utilization of the biological diversity of the Ayubia National Park, Khyber Pakhtunkhwa. Furthermore, in vivo and/or in vitro examination of the pharmacological activities of species with the highest fidelity level (FL%) as well as frequency of mention (FM) might be important for investigations on faunal-based new drugs.

14.
Plants (Basel) ; 12(6)2023 Mar 08.
Article En | MEDLINE | ID: mdl-36986911

Weeds are a major threat to agriculture and horticulture cropping systems that reduce yield. Weeds have a better ability to compete for resources compared to the main crops of various agro-ecosystems and act as a major impediment in reducing overall yield. They often act as energy drains in the managed agroecosystems. We studied weed infestation for five different agro-ecosystems in the part of Indian Western Himalayas represented by paddy, maize, mustard, apple and vegetable orchards. Systematic random sampling was done to record flowering phenology and diversity of weeds during the assessment period 2015-2020. We recorded 59 weed species, taxonomically distributed among 50 genera in 24 families. The Asteraceae family has the most species (15% species), followed by Poaceae (14% species), and Brassicaceae (12% species). The Therophytes were the dominant life form followed by Hemicryptophytes. The majority of the weeds were shown to be at their most blooming in the summer (predominantly from June to July). The Shannon index based diversity of weeds ranged from 2.307-3.325 for the different agro-ecosystems. The highest number of weeds was in the horticulture systems (apple > vegetable) followed by agriculture fields (maize > paddy > mustard). Agriculture and horticulture cropping systems were distinguished using indicator species analysis, which was supported by high and significant indicator values for a number of species. Persicaria hydropiper, Cynodon dactylon, Poa annua, Stellaria media, and Rorippa palustris had the highest indicator value in agriculture cropping systems, while Trifolium repens, Phleum pratense, and Trifolium pratense had the highest indicator value in horticulture cropping systems. We found that eleven weed species were unique to apple gardens followed by nine in maize, four in vegetables, two in mustard and one in paddy fields. Spatial turnover (ßsim) and nestedness-resultant components (ßsne) of species dissimilarity revealed dissimilarity lower than 50% among the five cropping systems. The study is expected to assist in formulating an appropriate management strategy for the control of weed infestation in the study region.

15.
Funct Integr Genomics ; 23(2): 86, 2023 Mar 17.
Article En | MEDLINE | ID: mdl-36930418

Globally, industrial farming endangers crucial ecological mechanisms upon which food production relies, while 815 million people are undernourished and a significant number are malnourished. Zero Hunger aims to concurrently solve global ecological sustainability and food security concerns. Recent breakthroughs in molecular tools and approaches have allowed scientists to detect and comprehend the nature and structure of agro-biodiversity at the molecular and genetic levels, providing us an advantage over traditional methods of crop breeding. These bioinformatics techniques let us optimize our target plants for our soil-less medium and vice versa. Most of the soil-borne and seed-borne diseases are the outcomes of non-treated seed and growth media, which are important factors in low productivity. The farmers do not consider these issues, thereby facing problems growing healthy crops and suffering economic losses. This study is going to help the farmers increase their eco-friendly, chemical residue-free, quality yield of crops and their economic returns. The present invention discloses a synergistic soil-less medium that consists of only four ingredients mixed in optimal ratios by weight: vermicompost (70-80%), vermiculite (10-15%), coco peat (10-15%), and Rhizobium (0-1%). The medium exhibits better physical and chemical characteristics than existing conventional media. The vermiculite to coco peat ratio is reduced, while the vermicompost ratio is increased, with the goals of lowering toxicity, increasing plant and water holding capacity, avoiding drying of the media, and conserving water. The medium provides balanced nutrition and proper ventilation for seed germination and the growth of seedlings. Rhizobium is also used to treat the plastic bags and seeds. The results clearly show that the current synergistic soil-less environment is best for complete plant growth. Securing genetic advantages via sexual recombination, induced random mutations, and transgenic techniques have been essential for the development of improved agricultural varieties. The recent availability of targeted genome-editing technology provides a new path for integrating beneficial genetic modifications into the most significant agricultural species on the planet. Clustered regularly interspaced short palindromic repeats and associated protein 9 (CRISPR/Cas9) has evolved into a potent genome-editing tool for imparting genetic modifications to crop species. In addition, the integration of analytical methods like population genomics, phylogenomics, and metagenomics addresses conservation problems, while whole genome sequencing has opened up a new dimension for explaining the genome architecture and its interactions with other species. The in silico genomic and proteomic investigation was also conducted to forecast future investigations for the growth of French beans on a synergistic soil-less medium with the purpose of studying how a blend of vermicompost, vermiculite, cocopeat, and Rhizobium secrete metal ions, and other chemical compounds into the soil-less medium and affect the development of our target plant as well as several other plants. This interaction was studied using functional and conserved region analysis, phylogenetic analysis, and docking tools.


CRISPR-Cas Systems , Soil , Humans , Proteomics , Hunger , Phylogeny , Genome, Plant , Plant Breeding/methods , Crops, Agricultural/genetics , Genomics
16.
Plants (Basel) ; 12(4)2023 Feb 10.
Article En | MEDLINE | ID: mdl-36840157

Due to the rising demand for essential oil in the world market, peppermint has gained an important status among aromatic and medicinal plants. It becomes imperative to optimize its performance in terms of the growth, physiological functioning and biosynthesis of specialized metabolites. A factorial randomized pot experiment was performed using three peppermint cultivars (Kukrail, Pranjal and Tushar) and five levels of leaf-applied nitrogen (N), viz. 0 (control), 0.5, 1.0, 1.5 and 2%. The phenological features, biochemical parameters, viability of root cells, stomatal and trichome behavior were assessed at 100 days after transplanting (DAT). The yield-related parameters, viz., herbage yield, essential oil content, menthol content and yield were studied at 120 DAT. The results revealed that increasing the N doses up to 1.5% enhanced all the studied parameters of peppermint, which thereafter (at the dose above 1.5% N) decreased. The variation pattern of the studied parameters was "low-high-low". Cultivar Kukrail surpassed the two other cultivars Tushar and Pranjal. Among the foliar sprays, the application of 1.5% N increased chlorophyll content and net photosynthetic rate in all three cultivars. Moreover, the essential oil (EO), EO yield and menthol yield of the plant were also increased linearly in all three cultivars as compared with their control plants. Nitrogen application enhanced the trichome size and density of the plants, as revealed through scanning electron microscopy. Furthermore, from the GC-MS studies, the EO content in the studied cultivars increased, particularly in the case of menthol, with the N application. It may be concluded that two sprays of N (1.5%) at appropriate growth stages could be beneficial for improving morphological, physio biochemical and yield attributes of peppermint.

17.
Plants (Basel) ; 12(3)2023 Feb 02.
Article En | MEDLINE | ID: mdl-36771746

Appropriate water management practices are essential for the successful cultivation of chia in water-scarce situations of semiarid regions. This is highly essential when new crops such as chia are introduced for ensuring diversity and water saving. Therefore, field trials (2020-21 and 2021-22) were conducted to understand the impact of deficit irrigation and bioregulators (BRs) on the seed yield, water productivity, and oil quality of chia. The effect of foliar application of BRs such as thiourea (TU; 400 ppm), salicylic acid (SA; 1.0 mM), potassium nitrate (KN; 0.15%), potassium silicate (KS; 100 ppm), kaolin (KO; 5%), and sodium benzoate (SB; 200 ppm) were monitored at different levels of irrigation: 100 (I100), 75 (I75), 50 (I50), and 25 (I25) percent of cumulative pan evaporation (CPE). Deficit irrigation at I25, I50, and I75 led to 55.3, 20.1, and 3.3% reductions in seed yield; 42.5, 22.5, and 4.2% in oil yield; and 58.9, 24.5, and 5.7% in omega-3 yield, respectively, relative to I100. Bioregulators could reduce the adverse impact of water deficit stress on seed, oil, and omega-3 yield. However, their beneficial effect was more conspicuous under mild water stress (I75), as revealed by higher seed yield (4.3-6.9%), oil yield (4.4-7.1%), and omega-3 yield (4.7-8.5%) over control (I100 + no BRs). Further, BRs (KN, TU, and SA) maintained oil quality in terms of linolenic acid and polyunsaturated fatty acid contents, even under mild stress (I75). Foliar application of KN, TU, and SA could save water to an extent of 36-40%. Therefore, the adverse impact of deficit irrigation on seed, oil, and omega-3 yields of chia could be minimized using BRs such as KN, TU, and SA, which can also contribute to improved water productivity.

18.
Plants (Basel) ; 12(3)2023 Feb 03.
Article En | MEDLINE | ID: mdl-36771769

Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is an invasive pest native to the American continent. The present study focused on bio-intensive tactics like intercropping, using natural enemies, botanical insecticides and biopesticides for managing S. frugiperda for the organic production of maize in Indian conditions. A total of eight different parasitoids attacking the different stages of S. frugiperda viz., eggs and larvae were found in the study area. The total parasitism rate due to all the parasitoids ranged from 28.37 to 42.44%. The egg-larval parasitoid, Chelonus formosanus Sonan (Hymenoptera: Braconidae) was the dominant parasitoid (12.55%), followed by Chelonus nr. blackburni (Hymenoptera: Braconidae) (10.98%) and Coccygydium sp. (4.85%). About 36.58 percent of the egg masses collected was parasitized by egg parasitoids, among which Telenomus remus (Nixon) (Hymenoptera: Scelionidae) was the dominant parasitoid. The botanicals insecticides such as citronella and annona extract were most effective, resulting in 100% mortality of FAW larvae (168 h after treatment). The essential oil of garlic (100%) was found highly effective in inhibiting egg hatching, followed by geraniol (90.76%). The maize intercropped with lady's finger (okra) recorded significantly the lowest pest infestation and recorded higher grain yield (6.17 q/ha) than other intercropping systems and control (5.10 q/ha). The overall bioefficacy of commercial biopesticides against the larvae of S. frugiperda was in the following order azadirachtin > Metarhizium anisopliae (Metch.) Sorokin (Hypocreales: Clavicipitaceae) > Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Clavicipitaceae) at 168 h after treatment.

19.
Funct Integr Genomics ; 23(1): 57, 2023 Feb 08.
Article En | MEDLINE | ID: mdl-36752963

The agricultural sector and environmental safety both work hand in hand to promote sustainability in important issues like soil health, plant nutrition, food safety, and security. The conventional methods have greatly harmed the environment and people's health and caused soil fertility and quality to decline as well as deteriorate. Keeping in view the excessive exploitation and cascade of degradation events due to unsustainable farming practices, the need of the hour demands choosing an appropriate, eco-friendly strategy to restore soil health, plant nutrition, and environmental aspects. The priority highlights a need for a sustainable and environment-friendly upgradation of the present agricultural systems to utilize the beneficial aspects related to harnessing the gene-microbiome strategies which would help in the restoration and replenishment of the microbial pool. Thus, exploring the microbiome is the utmost priority which gives a deep insight into the different aspects related to soil and plant and stands out as an important contributor to plant health and productivity. "Microbes" are important drivers for the biogeochemical cycles and targets like sustainability and safety. This essential microbial bulk (soil microbiome) is greatly influenced by agricultural/farming practices. Therefore, with the help of microbiome engineering technologies like meta-transcriptomics, meta-proteomics, metabolomics, and novel gene-altering techniques, we can easily screen out the highly diverse and balanced microbial population in the bulk of soil, enhancing the soil's health and productivity. Importantly, we need to change our cultivation strategies to attain such sustainability. There is an urgent need to revert to natural/organic systems of cultivation patterns where the microbiome hub can be properly utilized to strengthen soil health, decrease insect pest and disease incidence, reduce greenhouse gas emissions, and ultimately prevent environmental degradation. Through this article, we wish to propose a shift in the cultivation pattern from chemical to the novel, upgraded gene-assisted designed eco-friendly methodologies which can help in incorporating, exploring, and harnessing the right microbiome consortium and can further help in the progression of environmentally friendly microbiome technologies for agricultural safety and productivity.


Agriculture , Microbiota , Humans , Agriculture/methods , Soil , Plants , Soil Microbiology , Technology
20.
Biology (Basel) ; 12(2)2023 Feb 08.
Article En | MEDLINE | ID: mdl-36829546

Wild edible food plants (WFPs) are valuable resources in the traditional food systems of many local cultures worldwide, particularly in underdeveloped regions. Understanding patterns of food preferences requires conducting cross-cultural food studies among various ethnic groups in a specific area. In this context, the current study aimed to record WFP use among five ethnic groups in Punjab, Pakistan, by interviewing 175 informants selected through snowball sampling. The indicator food species for different ethnic groups were calculated using indicator analysis based on the percentage of citations. A total of 71 wild food plants (WFPs) belonging to 57 genera and 27 families were observed in the study area. A high proportion of these wild food plants (WFPs) belonged to Fabaceae with eleven species (15%), followed by Moraceae with seven species (9%). Fruits were most widely used (43%), followed by leaves (19%), and shoots (16%). The majority (35 species, 49%) of plants of WFPs were eaten as cooked vegetables. A cross-cultural comparison revealed that four species overlapped among five ethnic groups (Arain, Jutt, Rajpot, Mewati, and Dogar). The Arain ethnic group gathered and consumed a remarkable number of wild plants (35 species), possibly due to a special connection with the general abundance of the local flora, and being close to nature by adopting professions more allied to WFPs in the study area. The analysis of indicator species revealed distinct significant indicator values (p ≤ 0.05) between the main food species among the various ethnic groups. Amaranthus viridis was a common indicator of food in all five ethnic groups, while Ziziphus nammularia was a common indicator food plant of the Mewati, Rajpot, and Jutt ethnic groups; these plants are important in local diets, especially during times of food scarcity brought on by disease or drought. In addition, the current study reports 20 WFPs that have been rarely documented as human food in Pakistan's ethnobotanical literature. Future development plans should consider biocultural heritage and pay appropriate attention to local ecological knowledge, dynamics, and historical exchanges of traditional food systems.

...